Hypothalamic sensing of circulating lactate regulates glucose production
نویسندگان
چکیده
Emerging studies indicate that hypothalamic hormonal signalling pathways and nutrient metabolism regulate glucose homeostasis in rodents. Although hypothalamic lactate-sensing mechanisms have been described to lower glucose production (GP), it is currently unknown whether the hypothalamus senses lactate in the blood circulation to regulate GP and maintain glucose homeostasis in vivo. To examine whether hypothalamic sensing of circulating lactate is required to regulate GP, we infused intravenous (i.v.) lactate in the absence or presence of inhibition of central/hypothalamic lactate-sensing mechanisms in normal rodents. Inhibition of central/hypothalamic lactate-sensing mechanisms was achieved by three independent approaches. Tracer-dilution methodology in combination with the pancreatic clamp technique was used to assess the effect of i.v. and central/hypothalamic administrations on glucose metabolism in vivo. In the presence of physiologically relevant increases in the levels of plasma lactate, inhibition of central lactate-sensing mechanisms by lactate dehydrogenase inhibitor oxamate (OXA) or ATP-sensitive potassium channels blocker glibenclamide increased GP. Furthermore, direct administration of OXA into the mediobasal hypothalamus increased GP in the presence of similar elevation of circulating lactate. Together, these data indicate that hypothalamic sensing of circulating lactate regulates GP and is required to maintain glucose homeostasis.
منابع مشابه
Hypothalamic Nutrient Sensing Activates a Forebrain-Hindbrain Neuronal Circuit to Regulate Glucose Production In Vivo
OBJECTIVE Hypothalamic nutrient sensing regulates glucose production, but the neuronal circuits involved remain largely unknown. Recent studies underscore the importance of N-methyl-d-aspartate (NMDA) receptors in the dorsal vagal complex in glucose regulation. These studies raise the possibility that hypothalamic nutrient sensing activates a forebrain-hindbrain NMDA-dependent circuit to regula...
متن کاملRegulation of blood glucose by hypothalamic pyruvate metabolism.
The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The...
متن کاملGlucose Transporter-1 in the Hypothalamic Glial Cells Mediates Glucose Sensing to Regulate Glucose Production In Vivo
OBJECTIVE Circulating glucose inhibits glucose production in normal rodents and humans, but this glucose effectiveness is disrupted in diabetes due partly to sustained hyperglycemia. We hypothesize that hyperglycemia in diabetes impairs hypothalamic glucose sensing to lower glucose production, and changes of glucose transporter-1 (GLUT1) in the hypothalamic glial cells are responsible for the d...
متن کاملHypothalamic AMP-Activated Protein Kinase Regulates Glucose Production
OBJECTIVE The fuel sensor AMP-activated protein kinase (AMPK) in the hypothalamus regulates energy homeostasis by sensing nutritional and hormonal signals. However, the role of hypothalamic AMPK in glucose production regulation remains to be elucidated. We hypothesize that bidirectional changes in hypothalamic AMPK activity alter glucose production. RESEARCH DESIGN AND METHODS To introduce bi...
متن کاملEvidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats
The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we u...
متن کامل